NUMERICAL METHOD OF SOLVING A CERTAIN PROBLEM
ON CONVECTIVE DIFFUSION IN A MOVING LIQUID

Zh. N. Kudryasheva UDC 532.696:518.5
A numerical method of solving a system of two second-order parabolic partial differential
equations describing the diffusion of matter in a moving liquid is described.

1. Formulation of the Problem

We congider the following problem on convective diffusion in a moving liquid medium: the concentration
of conservative impurities {ions of Na, Cl, and so on) equals zero at the initial moment of time t = t; along
a segment of length ! of a channel along which a liquid is flowing from left to right; on the left boundary of the
segment there is a certain source of contamination which introduces into the moving liquid impurities of con-
centration S,. Given sources of contamination, each with its own mode of operation, are prescribed along the
entire length of the segment. We assume that on the right boundary of the segment the impurity concentration
reaches the value S,. It is required to determine the impurity content at time t along the entire length of the
segment. This problem is described by a system of equations consisting of the St. Venant equations and
equations of convective-diffusion type:
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We note that problems of this sort are encountered in the study of the motion of conservative impurities in
river systems. Thus, the system of equations (1.1)-(1.3) forms an essential part of the mathematical model
of water quality developed by Vasil'ev [1]. In order to describe the processes occurring in the water medium
due to the dumping into it of industrial and domestic effluents, this model utilizes the St. Venant equations and
equations describing the balance of the various impurities, oxygen, and heat. As a result, this model permits
determination of the content of the various impurities, oxygen, and heat along the entire length of the river
system at any moment of time as a function of the hydrologic conditions of the river system and for any sources
of contamination.

In the present paper we investigate the quality of the water in a flow system using the chamber model,
a simplification of the model of [1]. Essentially, in the chamber model the river or river system is divided
up into individual chambers (parts of the river channel) in which all the characteristics of the flow and of the
quality of the water are taken to be constant. The chamber model has been used [2,5-7] to calculate the hydro-
logic characteristics of rivers. We shall utilize the chamber model to calculate the motion of impurities in
water. Like Vasil'ev's model [1], the chamber model is one-dimensional.
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Fig.1. Propagation of contamination from a single continuously acting source [1)
t =10; 2) 20; 3) 30; 4) 40; 5) 50; 6) 60].

Fig.2. Contamination wave from source opérating for a short time [1} t =10; 2)
20; 3) 30; 4) 50; 5) 70; 6) 80].

We carry out a few manipulations on Egs, (1.1)-(1.3) contradicting the sense of the problem: expand the
differentiation operators on the left side of (1.2) and set the inertial terms 8v/6t, vév/9x equal to zero (we
assume that they are small for the plains-type rivers that we shall be considering). Then, utilizing the conti-
nuity equation 9w/t + 8Q/8x =p, we obtain in place of (1.1)-(1.3) a system of equations of the form
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with the same boundary conditions as before. Here § = ewR!/2, and\as in [1] we take the coefficient of longi-
tudinal dispersion E in the form E = aRve-!, where o = const. In the future, instead of the Chézy coefficient
¢, we shall use the Strickler roughness coefficient k given by ¢ = kR1/5,

2. Description of the Numerical Method

We consider the system of equations (1.7)-(1.9) in the region D = (0 =x = [, 0 =t = T) with given initial
and boundary conditions (1.4)-(1.6). Eguation (1.1) has been studied by Baklanovskaya and Chechel' [2], who
described a numerical method of computing the approximate solution and who showed that the latter converged
toward the exact solution when the number of steps in x and in t was allowed to increase without limit. For
Eq. (1.1) we shall employ the same scheme as in [2]; for Eq. (1.3) we shall utilize an implicit scheme of the
first order of accuracy in x and t, namely: we divide the investigated stretch of river into chambers and num-
ber them going downstream. Let h; be the length of the i-th chamber ( =1,2,...,N) and 7, the step in time,
i.e., t, =n7. The difference equations corresponding to system (1.7)-(1.9) we write in the form
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where vy =1, 6 =0, if sign 8y/dx =+ 1 and y =0, 6 =1, if sign dy/ox =1; Q% is the amount of water passing

at time t, from chamber j to chamber i; p;® *! = aR; (n+1)5/6Q1n+1ki‘1; @=20.2 -3600Vg. Theboundary con~
ditions are approximated in the following manner:
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Fig.3. Propagation of contamination from two
sources [1) t =1; 2) 3; 3) 10;-4) 30; 5) 50], t,
h; x, km; S, mg/liter.
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We consider a river with a rectangular channel, so that
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System (2.1)-(2.3) is solved in the following manner: first, y;2 +! is found from the first equation Q™ *1is
determined in the process), then the third equation with coefficients taken from the (n +1)~th sheet is solved.
We cite the algorithm for calculating S;® *!, where the expression for Qijn *1jg linearized as in [2):
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Inserting expressions (2.4)-(2.5) into Eq. (1.7) givés an equation for y;© +1
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After some straightforward manipulations Eq. (2.3) can be brought to a similar equation:
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Both equations (2.6) and (2.8) are solved independently by the sweep method with sweep coefficients calculated
in the usual manner (see [4], for example). It is shown in [2] that the sweep method for Eq. (2.6) is stable. It
follows from the form of (2.9) that the conditions for stability of the sweep A'; =0, B'; =0, C'y =AY} + B'; are
also satisfied for Eq. (2.8).
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3. Solution of Problem by Method Described Above

We consider three types of problem on water quality for the same hydrologic data in each case: width
of river constant §j = 300 m; length of river ! = 1500 km; variation with x of height of river bed y; =6 (I—x)I-1;
water level at initial moment of time yp= (y3+3) m, waterlevel at left end y; = 9 m; at the right end water level
is also constant y, = 3 m, although the described method can be used to solve the quality problem when the
river is in a state of flood; roughness coefficient k =120+ 10° m!/ 3/h. Similar hydrologic data were considered
in [3].

Problem 1. Atthe leftboundary (x =0) of the segment of the river there is a source of contamination releas-
ing continuously into the water an impurity with concentration S; = 100 mg/liter; at the right boundary we as-
sume that the impurity concentration S|, _ ; = 0; at the initial moment of time over the entire stretch of river
we have 8|t -y =0. There are no more sources of contamination.

Problem 2. A source located at the left boundary introduces contamination up to a time t =12 h, S|p<y=
100 mg/liter, after which it ceases to operate Sl >y, = 0; as before, Slx=7 = 0, Sli=g =0, fi(x,t) = 0.

Problem 3. A source at the left boundary operates continuously: S|y - =100 mg/liter, S|, -; =0,
S|t =0 = 0; at a distance of 60 km there is another source that dumps into the water at time t = 0.1 h impurity
of concentration S|k = ¢, = 80 mg/liter.

For all these problems the computation was carried out with a constant step in the time of T = 0.1 h and
a constant step in distance of h = 600 m. Figure 1 shows the function S(x,t) at various moments of time for
Problem 1. It can be seen that the front of the contamination wave propagates as a step with a well-defined
shape due to the fact that the diffusion term 8(Ew 985/0x)/8x is small compared with the term describing hydro-
dynamic transport Q 88/0x. The effect of diffusion shows up, however, in the smearing out of the front of the
contamination wave with time. The continuous release of contaminant of concentration S; by a source located
at the left boundary results, even after only t =40 h, in the impurity concentration at a distance of 48 km
being equal or approximately equal to that at the point of introduction.

Figure 2 shows the dependence of S(x,t) on distance for various fixed moments of time for Problem 2.
Up to a time t =12 h the graph is the same as for the first problem, but even at t = 20 h the picture has
changed greatly: the graph of concentration has a sawtooth shape, and the concentration at the top of the "teeth"
does not reach the value S; but rapidly decreases with time. The contamination wave eventually completely
leaves the investigated zone.

Figure 3 illustrates Problem 3, the propagation of contamination in the case of two sources. The fact
that the second source operates only once and is located far from the first (at a distance of 60 km) has the
effect that the contaminations from these sources are not superposed on each other; the progress of the conta-
mination from each of the sources can be clearly followed.

NOTATION

8,x,t, impurity concentration, distance along river, and time, respectively; Q, w,v, water flow rate,
cross-sectioned area of river, and mean velocity of flow, respectively; y,R, line-of-sight water level and
hydraulic radius; c¢,E, Chézy coefficient and coefficient of longitudinal dispersion; p, f, on-route influx of
water per unit length and strength of source of contamination; y;, 8, ordinate of river bottom and width of
river channel; g, acceleration due to gravity.
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